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ABSTRACT 
An optimization of test pattern for testing of a Static Random Access Memory (SRAM) using genetic algorithm 

interconnects presented here is a method that associates a turn on inputs to numerous nets, which gives rise to 

test vectors to determine stuck-at, open, and bridging faults. This set up gives us privilege in reducing 

unnecessary composition that reduces the testing time for application-dependent testing for coverage of faults. 

This optimized test pattern is used as a test source for testing a circuit and identifying the faults in the circuit. 

The faults which are covered in are stuck at open and bridging faults. Genetic algorithm reduces the redundancy 

and optimizes the test pattern which results in reduced testing time and power consumption. 

Keywords: Test pattern generator (TPG), Genetic Algorithm (GA), Linear feedback shift register (LFSR) Build 

in self-test (BIST), Circuit under test (CUT), Output response analyzer (ORA). 

 
I. INTRODUCTION 

Built in Self-Test (BIST) is an emerging 

technique for testing complex VLSI systems. To test 

a design by using a BIST methodology, the design 

has to be modified (enhanced) in such a way that part 

of the circuit is used to test the design itself. 

Therefore, BIST is defined as a Design for testability 

(DFT) technique in which testing is accomplished 

through built-in hardware components. A general 

BIST is shown. It consists of a test source block, the 

Circuit under test (CUT), a test response analysis 

block and a test controller block, which manages the 

application of the tests. In a classical BIST scheme, 

the test source consists of a special kind of register, 

test pattern generator (TPG), which generates on-chip 

test patterns. Recently, a new hybrid BIST approach 

has been proposed. It enhances the design with a read 

only memory (ROM) for storing some deterministic 

test patterns. These stored test patterns are used to 

capture faults that cannot be detected by the test 

patterns generated by the on-chip TPG. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: BIST Architecture 

 
 

 
II. EXISTING MODEL 

Application-dependent testing of a SRAM-

based FPGA interconnect is been proposed. The 

novelty of this comprehensive method is that it 

connects an activating input to multiple nets, thus 

generating a compact set of activating test vectors and 

requiring a reduced numbers of configurations. The 

faults covered in this technique include all possible 

stuck-at, open, and pair wise bridging faults. 

Detection is not based on physical information (such 

as layout) of the FPGA interconnect; in this latter 

case, the possible adjacencies could be found and the 

number of pair wise bridging faults could be reduced. 

However, to allow a fair comparison with existing 

works logic simulation is therefore employed also in 

this paper; therefore, all possible stuck-at, open, and 

pair wise bridging faults are considered and detected 

by the proposed approach. So, for detecting the faults 

at the primary outputs, the induction fault detection 

method presented in is adopted. This is lower than a 

previous comprehensive method as well as by 

combining different methods. The existing method 

has a computational algorithm execution with L is the 

number of LUTs in the design. The activating input 

vectors required to sensitize the faults in the nets are 

generated using the Walsh code. The Walsh code for 

an interconnect with N nets is generated by its binary 

representation as a number. An activating input 

vector and the corresponding single-term function for 

a LUT for a configuration are derived from a set of 

activating inputs. The following block diagram 

describes about the activating input assignment, 
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Figure 2: An Input Assignment 

 

III. CONFIGURATION GENERATION 

ALGORITTHM 
The process of assigning activating inputs 

and test vectors in the configurations for the nets 

starts by extracting the interconnect features of a 

specific circuit mapped to an FGPA (in this case, this 

is given by the Vertex 4) from the Native Generic 

Database (NGD) of the design. The NGD is 

converted to a text file and then the nets are sorted 

based on the number of connected LUTs. A greedy 

criterion for selecting the activating inputs and test 

vectors is used as follows: The first activating input is 

assigned to a net that is connected to the largest 

number of LUTs, followed by assigning the second 

and third activating inputs to the other nets in a 

descending order. However, during each activating 

input assignment, it must be ensured that no two (or 

more) nets connected to a LUT are driven by the 

same activating input. In the case of two nets 

connected to the same LUT having the same 

activating input, one of the activating inputs is 

assigned to the next available activating input to 

resolve the conflict. The pseudo code for the above 

process as given in the induction method of Tahoori 

[3] is utilized for propagating the sensitized faults to 

the primary output, thus accomplishing observability 

in detection. 

At completion of the algorithm, the 

activating inputs to the LUTs are found and hence, 

the corresponding test configurations can be 

determined. 

 

IV. PROPOSED METHOD 
Optimization of test patterns for testing 

SRAM using genetic algorithm is been proposed. The 

novelty of this comprehensive method is that it 

connects an activating input to multiple nets, thus 

generating a compact set of activating test vectors and 

requiring a reduced numbers of configurations. The 

faults covered in this technique include all possible 

stuck-at, open, and pair wise bridging faults.  

However, to allow a fair comparison with existing 

works logic simulation is therefore employed also in 

this paper; therefore, all possible stuck-at, open, and 

pair wise bridging faults are considered and detected 

by the proposed approach. So, for detecting the faults 

at the primary outputs, the induction fault detection 

method is adopted. The proposed method optimizes 

the test pattern in execution .This is lower than a 

previous comprehensive method. The proposed 

method has a genetic algorithm execution. Therefore, 

the proposed method differs from previous 

approaches with respect to test pattern. The test 

patterns are generated by using Linear feedback shift 

register (LFSR).  

An LFSR is a shift register with feedbacks 

from the last stage and other stages. The outputs of its 

flip-flops form the test pattern. Each state of the 

LFSR corresponds to one test pattern. The number of 

unique test patterns the LFSR can generate depends 

on the number and location of the feedbacks as well 

as its initial value, which is known as the seed. An 

example of an LFSR is shown in Figure 3  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: LFSR Example 

 

It is initialized with the seed 0001. In the 

subsequent clock cycles, a series of test patterns are 

produced at the outputs of the flip-flops. This LFSR, 

which has n=4 flip-flops, produces a total of 15 (2n - 

1) distinct patterns (except 0000) as shown in 

Figure.3. The feedback positions are usually 

described by a characteristic polynomial. In our 

example, feedbacks are made from the first (x) and 

the fourth (x4) positions, hence the characteristic 

polynomial of the LFSR is p(x) = 1 + x + x4. The 
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choice of feedback positions (the choice of the 

polynomial) determines the length of the test 

sequences generated. Special polynomials known as 

primitive polynomials give maximal length sequences 

(2n-1). A polynomial p(x) = 1 + x + x4, which is used 

in our example, is primitive. It generates a sequence 

of 15 distinct test patterns before repetition. 

Therefore, when designing an LFSR a good choice of 

seed and polynomial is crucial for generating a good 

sequence of tests. These test patterns optimized by 

using genetic algorithm (GA) 

 

V. GENETIC ALGORITHM 
 Genetic algorithm (GA) is an adaptive 

heuristic search algorithm based on the mechanism of 

natural selection and evaluation. GA is an artificial 

intelligence procedure and robust search method. 

This technique is efficient for finding combinatorial 

optimization problem. The objective of GA is to find 

optimal solution to a problem. Genetic algorithm 

belongs to the class of evolutionary algorithm which 

generates solution to optimization problems using 

techniques inspired by natural evolution such as 

inheritance, mutation, selection and crossover. 

 

VI. BLOCK DESCRIPTION 
Proposed method Hardware Architecture of 

GA is shown in fig 4.  Here the evolvable hardware is 

used. This evolvable hardware can be implemented 

by combining hardware architecture of GA with 

evolvable computing logic. This paper describes the 

implementation of evolvable hardware with the state 

machine hardware. The hardware architecture of 

genetic algorithm model based on FPGA consists of 

two units. They are processing unit and control unit.  

 

Processing unit:  

The function of the processing unit includes 

initial population generation, fitness evaluation and 

genetic operation. There are five hardware modules in 

the processing unit. They are generation modules, 

selection modules, crossover modules, mutation 

modules and random number generation module 

(RNG). RNG generates random number for other 

modules.   

 

Control unit:  

The control unit acts as a control state 

machine. The state machine of the control unit can be 

used to decide the operating sequence of initial 

population generation, population storage, fitness 

evaluation, selection, crossover and mutation. It can 

automatically send control signal to the processing 

unit. 

   

Operation:  

The control signal can assure a correct 

executing in circles of these modules in the 

processing unit, depending on the operating rule 

about the sequence of these operations. The control 

unit receives the current state signals and generates 

the next state. These two units work coordinately to 

perform the calculation of GA. 

 
Figure 4: Hardware Architecture of GA 

 

Control state machine: 

  The modules of processing unit are 

controlled by the control state machine of the control 

unit and can work on two states. They are active state 

and sleeping state. The figure 5 shows the binary 

decision diagram of the control state machine. The 

state machine consists of four states. They are idle, 

birth, GA, store. 

 
Figure 5: Control State Machine 

 

The test generator starts with a random 

population of n individuals, and a (fault) simulator is 

used to calculate the fitness of each individual. The 

best test vector evolved in any generation is selected 

and added to the test set. Then, the fault set is updated 

by removing the detected faults by the added vectors. 

The GA process repeats itself until no more faults can 

be detected 

 

VII. RESULTS AND DISCUSSION 
Hence the genetic algorithm used here has 

avoided the redundancy and reduced the number of 

test patterns by optimization technique. It also 

reduced the time constraint with just ten Test 

Patterns. Only these optimized ten test patterns are 
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used for testing and fault analysis of the circuit. The 

simulated output of without fault and with fault are 

shown below in fig 6 & fig 7 respectively. Thus the 

observed results from the proposed architecture 

achieves minimum power in the range of 220-230 

mW and the reduced time constraint is about 1.5-2 ns. 

 

 
Figure 6: Without Fault 

 

 
Figure 7: With Fault 

 

VIII. CONCLUSION 
Thus genetic algorithmic method for 

optimizing test pattern for testing of a SRAM that is 

been proposed relies on generating minimized test 

patterns. This algorithmic-based method detects all 

stuck-at, open, and pair wise bridging faults, 

optimizes test patterns with minimum time constraint 

and less power consumption. 
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